On the quasi-derivation relation for multiple zeta values

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Quasi-derivation Relation for Multiple Zeta Values

Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relation for multiple zeta values. The goal of the present paper is to present a proof of this conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. In addition, some algebraic aspects of the quasi-derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a ...

متن کامل

On an extension of the derivation relation for multiple zeta values

In this paper, we propose a conjectural generalization of the derivation relation for multiple zeta values. This extension was inspired by works of Alain Connes and Henri Moscovici on a certain Hopf algebra of transverse geometry [1], [2], and is thought of as a first attempt to materialize the suggestion given at the end of Section 7 in [4]. The multiple zeta value (MZV) is a real number defin...

متن کامل

On Extended Derivation Relations for Multiple Zeta Values

Recently, Masanobu Kaneko introduced a conjecture on an extension of the derivation relations for multiple zeta values. The aim of this paper is to give a proof of the conjecture by reducing it to a class of relations for multiple zeta values studied by Kawashima. Also we will give some algebraic aspects of the extended derivation operator ∂ (c) n on Q〈x, y〉, which was defined by modeling a Hop...

متن کامل

An exotic shuffle relation for multiple zeta values

In this short note we will provide a new proof of the following exotic shuffle relation of multiple zeta values: ζ({2}x{3, 1}) = ( 2n+m m ) π (2n+ 1) · (4n+ 2m+ 1)! . This was proved by Zagier when n = 0, by Broadhurst when m = 0, and by Borwein, Bradley, and Broadhurst when m = 1. In general this was proved by Bowman and Bradley. Our new idea is to use the method of Borwein et al. to reduce th...

متن کامل

A generalization of Ohno’s relation for multiple zeta values

In the present paper, we prove that certain parametrized multiple series satisfy the same relation as Ohno’s relation for multiple zeta values. This result gives us a generalization of Ohno’s relation for multiple zeta values. By virtue of this generalization, we obtain a certain equivalence between the above relation among the parametrized multiple series and a subfamily of the relation. As ap...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 2009

ISSN: 0022-314X

DOI: 10.1016/j.jnt.2009.03.003